Saturday, November 11, 2017

Pilot comparative study on the health of vaccinated and unvaccinated

http://www.oatext.com/Pilot-comparative-study-on-the-health-of-vaccinated-and-unvaccinated-6-to-12-year-old-U-S-children.php


Pilot comparative study on the health of vaccinated and unvaccinated 6- to 12- year old U.S. children

Anthony R Mawson
 
Professor, Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, MS 39213, USA
Brian D Ray
 
President, National Home Education Research Institute, PO Box 13939, Salem, OR 97309, USA
Azad R Bhuiyan
 
Associate Professor, Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, MS 39213, USA
Binu Jacob
Former graduate student, Department of Epidemiology and Biostatistics School of Public Health, Jackson State University, Jackson, MS 39213, USA
DOI: 10.15761/JTS.1000186

Abstract

Vaccinations have prevented millions of infectious illnesses, hospitalizations and deaths among U.S. children, yet the long-term health outcomes of the vaccination schedule remain uncertain. Studies have been recommended by the U.S. Institute of Medicine to address this question. This study aimed 1) to compare vaccinated and unvaccinated children on a broad range of health outcomes, and 2) to determine whether an association found between vaccination and neurodevelopmental disorders (NDD), if any, remained significant after adjustment for other measured factors. A cross-sectional study of mothers of children educated at home was carried out in collaboration with homeschool organizations in four U.S. states: Florida, Louisiana, Mississippi and Oregon. Mothers were asked to complete an anonymous online questionnaire on their 6- to 12-year-old biological children with respect to pregnancy-related factors, birth history, vaccinations, physician-diagnosed illnesses, medications used, and health services. NDD, a derived diagnostic measure, was defined as having one or more of the following three closely-related diagnoses: a learning disability, Attention Deficient Hyperactivity Disorder, and Autism Spectrum Disorder. A convenience sample of 666 children was obtained, of which 261 (39%) were unvaccinated. The vaccinated were less likely than the unvaccinated to have been diagnosed with chickenpox and pertussis, but more likely to have been diagnosed with pneumonia, otitis media, allergies and NDD. After adjustment, vaccination, male gender, and preterm birth remained significantly associated with NDD. However, in a final adjusted model with interaction, vaccination but not preterm birth remained associated with NDD, while the interaction of preterm birth and vaccination was associated with a 6.6-fold increased odds of NDD (95% CI: 2.8, 15.5). In conclusion, vaccinated homeschool children were found to have a higher rate of allergies and NDD than unvaccinated homeschool children. While vaccination remained significantly associated with NDD after controlling for other factors, preterm birth coupled with vaccination was associated with an apparent synergistic increase in the odds of NDD. Further research involving larger, independent samples and stronger research designs is needed to verify and understand these unexpected findings in order to optimize the impact of vaccines on children’s health.

Discussion

Following a recommendation of the Institute of Medicine [19] for studies comparing the health outcomes of vaccinated and unvaccinated children, this study focused on homeschool children ages 6 to 12 years based on mothers’ anonymous reports of pregnancy-related conditions, birth histories, physician-diagnosed illnesses, medications and healthcare use. Respondents were mostly white, married, and college-educated, upper income women who had been contacted and invited to participate in the study by the leaders of their homeschool organizations. Data from the survey were also used to determine whether vaccination was associated specifically with NDDs, a derived diagnostic category combining children with the diagnoses of learning disability, ASD and/or ADHD.
With regard to acute and chronic conditions, vaccinated children were significantly less likely than the unvaccinated to have had chickenpox and pertussis but, contrary to expectation, were significantly more likely to have been diagnosed with otitis media, pneumonia, allergic rhinitis, eczema, and NDD. The vaccinated were also more likely to have used antibiotics, allergy and fever medications; to have been fitted with ventilation ear tubes; visited a doctor for a health issue in the previous year, and been hospitalized. The reason for hospitalization and the age of the child at the time were not determined, but the latter finding appears consistent with a study of 38,801 reports to the VAERS of infants who were hospitalized or had died after receiving vaccinations. The study reported a linear relationship between the number of vaccine doses administered at one time and the rate of hospitalization and death; moreover, the younger the infant at the time of vaccination, the higher was the rate of hospitalization and death [55]. The hospitalization rate increased from 11% for 2 vaccine doses to 23.5% for 8 doses (r2 = 0.91), while the case fatality rate increased significantly from 3.6% for those receiving from 1-4 doses to 5.4 % for those receiving from 5-8 doses.
In support of the possibility that the number of vaccinations received could be implicated in risks of associated chronic illness, a comparison of unvaccinated, partially and fully vaccinated children in the present study showed that the partially vaccinated had increased but intermediate odds of chronic disease, between those of unvaccinated and fully vaccinated children, specifically for allergic rhinitis, ADHD, eczema, a learning disability, and NDD as a whole.
 The national rates of ADHD and LD are comparable to those of the study. The U.S. rate of ADHD for ages 4-17 (twice the age range of children than the present study), is 11% [31]. The study rate of ADHD for ages 6 to 12 is 3.3%, and 4.7% when only vaccinated children are included. The national LD rate is 5% [32], and the study data show a rate of LD of 3.9% for all groups, and 5.6% when only vaccinated children are included. However, the ASD prevalence of 2.24% from a CDC parent survey is lower than the study rate of 3.3%. Vaccinated males were significantly more likely than vaccinated females to have been diagnosed with allergic rhinitis, and NDD. The percentage of vaccinated males with an NDD in this study (14.4%) is consistent with national findings based on parental responses to survey questions, indicating that 15% of U.S. children ages 3 to 17 years in the years 2006-2008 had an NDD [28]. Boys are also more likely than girls to be diagnosed with an NDD, and ASD in particular [29].
Vaccination was strongly associated with both otitis media and pneumonia, which are among the most common complications of measles infection [56,57]. The odds of otitis media were almost four-fold higher among the vaccinated (OR 3.8, 95% CI: 2.1, 6.6) and the odds of myringotomy with tube placement were eight-fold higher than those of unvaccinated children (OR 8.0, 95% CI: 1.0, 66.1). Acute otitis media (AOM) is a very frequent childhood infection, accounting for up to 30 million physician visits each year in the U.S., and the most common reason for prescribing antibiotics for children [58,59]. The incidence of AOM peaks at ages 3 to 18 months and 80% of children have experienced at least one episode by 3 years of age. Rates of AOM have increased in recent decades [60]. Worldwide, the incidence of AOM is 10.9%, with 709 million cases each year, 51% occurring in children under 5 years of age [61]. Pediatric AOM is a significant concern in terms of healthcare utilization in the U.S., accounting for $2.88 billion in annual health care costs [62].
Numerous reports of AOM have been filed with VAERS. A search of VAERS for “Cases where age is under 1 and onset interval is 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 days and Symptom is otitis media” [63] revealed that 438,573 cases were reported between 1990 and 2011, often with fever and other signs and symptoms of inflammation and central nervous system involvement. One study [64] assessed the nasopharyngeal carriage of S. pneumoniaeH. influenzae, and M. catarrhalis during AOM in fully immunized, partly immunized children with 0 or 1 dose of Pneumococcal Conjugate Vaccine-7 (PCV7), and “historical control” children from the pre-PCV-7 era, and found an increased frequency of M. catarrhaliscolonization in the vaccinated group compared to the partly immunized and control groups (76% vs. 62% and 56%, respectively). A high rate of Moraxella catarrhalis colonization is associated with an increased risk of AOM [65].
Successful vaccination against pneumococcal infections can lead to replacement of the latter in the nasopharyngeal niche by nonvaccine pneumococcal serotypes and disease [66]. Vaccination with PCV-7 has a marked effect on the complete microbiota composition of the upper respiratory tract in children, going beyond shifts in the distribution of pneumococcal serotypes and known potential pathogens and resulting in increased anaerobes, gram-positive bacteria and gram-negative bacterial species. PCV-7 administration also correlates highly with the emergence and expansion of oropharyngeal types of species. These observations have suggested that eradication of vaccine serotype pneumococci can be followed by colonization of other bacterial species in the vacant nasopharyngeal niche, leading to disequilibria of bacterial composition (dysbiosis) and increased risks of otitis media. Long-term monitoring has been recommended as essential for understanding the full implications of vaccination-induced changes in microbiota structure [67].
The second aim of the paper focused on a specific health outcome and sought to determine whether vaccination remained associated with neurodevelopmental disorders (NDD) after controlling for other measured factors. After adjustment, the factors that remained significantly associated with NDD were vaccination, nonwhite race, male gender, and preterm birth. The apparently strong association between both vaccination and preterm birth and NDD suggested the possibility of an interaction between these factors. This was shown in a final adjusted model with interaction (controlling for the interaction of preterm birth with vaccination). In this model, vaccination, nonwhite race and male gender remained associated with NDD, whereas preterm birth itself was no longer associated with NDD. However, preterm birth combined with vaccination was associated with a 6.6-fold increased odds of NDD.
In summary, vaccination, nonwhite race, and male gender were significantly associated with NDD after controlling for other factors. Preterm birth, although significantly associated with NDD in unadjusted and adjusted analyses, was no longer associated with NDD in the final model with interaction. However, preterm birth and vaccination combined was strongly associated with NDD in the final adjusted model with interaction, more than doubling the odds of NDD compared to vaccination alone. Preterm birth has long been known as a major factor for NDD [68,69], but since preterm infants are routinely vaccinated, the separate effects of preterm birth and vaccination have not been examined. The present study suggests that vaccination could be a contributing factor in the pathogenesis of NDD but also that preterm birth by itself may have a lesser or much reduced role in NDD (defined here as ASD, ADHD and/or a learning disability) than currently believed. The findings also suggest that vaccination coupled with preterm birth could increase the odds of NDD beyond that of vaccination alone.

Potential limitations

We did not set out to test a specific hypothesis about the association between vaccination and health. The aim of the study was to determine whether the health outcomes of vaccinated children differed from those of unvaccinated homeschool children, given that vaccines have nonspecific effects on morbidity and mortality in addition to protecting against targeted pathogens [11]. Comparisons were based on mothers’ reports of pregnancy-related factors, birth histories, vaccinations, physician-diagnosed illnesses, medications, and the use of health services. We tested the null hypothesis of no difference in outcomes using chi-square tests, and then used Odds Ratios and 96% Confidence Intervals to determine the strength and significance of the association.
If the effects of vaccination on health were limited to protection against the targeted pathogens, as is assumed to be the case [21], no difference in outcomes would be expected between the vaccinated and unvaccinated groups except for reduced rates of the targeted infectious diseases. However, in this homogeneous sample of 666 children there were striking differences in diverse health outcomes between the groups. The vaccinated were less likely to have had chickenpox or whooping cough, as expected, but more likely to have been diagnosed with pneumonia and ear infections as well as allergies and NDDs.
What credence can be given to the findings? This study was not intended to be based on a representative sample of homeschool children but on a convenience sample of sufficient size to test for significant differences in outcomes. Homeschoolers were targeted for the study because their vaccination completion rates are lower than those of children in the general population. In this respect our pilot survey was successful, since data were available on 261 unvaccinated children.
To eliminate opportunities for subjectivity or opinion in the data, only factual information was requested and the questions involved memorable events such as physician-diagnosed diseases in a child. With regard to minimizing potential bias in the information provided by mothers, all communications with the latter emphasized neutrality regarding vaccination and vaccine safety. To minimize recall bias, respondents were asked to use their child’s vaccination records. To enhance reliability, closed-ended questions were used and each set of questions had to be completed before proceeding to the next. To enhance validity, parents were asked to report only physician-diagnosed illnesses.
Mothers’ reports could not be validated by clinical records because the survey was designed to be anonymous. However, self-reports about significant events provide a valid proxy for official records when medical records and administrative data are unavailable [70]. Had mothers been asked to provide copies of their children’s medical records it would no longer have been an anonymous study and would have resulted in few completed questionnaires. We were advised by homeschool leaders that recruitment efforts would have been unsuccessful had we insisted on obtaining the children’s medical records as a requirement for participating in the study.
A further potential limitation is under-ascertainment of disease in unvaccinated children. Could the unvaccinated have artificially reduced rates of illness because they are seen less often by physicians and would therefore have been less likely to be diagnosed with a disease? The vaccinated were indeed more likely to have seen a doctor for a routine checkup in the past 12 months (57.5% vs. 37.1%, p < 0.001; OR 2.3, 95% CI: 1.7, 3.1). Such visits usually involve vaccinations, which non-vaccinating families would be expected to refuse. However, fewer visits to physicians would not necessarily mean that unvaccinated children are less likely to be seen by a physician if their condition warranted it. In fact, since unvaccinated children were more likely to be diagnosed with chickenpox and whooping cough, which would have involved a visit to the pediatrician, differences in health outcomes are unlikely to be due to under-ascertainment.
Strengths of the study include the unique design of the study, involving homeschool mothers as respondents, and the relatively large sample of unvaccinated children, which made it possible to compare health outcomes across the spectrum of vaccination coverage. Recruitment of biological mothers as respondents also allowed us to test hypotheses about the role of pregnancy-related factors and birth history as well as vaccination in NDD and other specific conditions. In addition, this was a within-group study of a demographically homogeneous population of mainly white, higher-income and college-educated homeschooling families in which the children were all 6-12 years of age. Information was provided anonymously by biological mothers, obviously well-informed about their own children’s vaccination status and health, which likely increased the validity of the reports.

Conclusions

Assessment of the long-term effects of the vaccination schedule on morbidity and mortality has been limited [71]. In this pilot study of vaccinated and unvaccinated homeschool children, reduced odds of chickenpox and whooping cough were found among the vaccinated, as expected, but unexpectedly increased odds were found for many other physician-diagnosed conditions. Although the cross-sectional design of the study limits causal interpretation, the strength and consistency of the findings, the apparent “dose-response” relationship between vaccination status and several forms of chronic illness, and the significant association between vaccination and NDDs all support the possibility that some aspect of the current vaccination program could be contributing to risks of childhood morbidity. Vaccination also remained significantly associated with NDD after controlling for other factors, whereas preterm birth, long considered a major risk factor for NDD, was not associated with NDD after controlling for the interaction between preterm birth and vaccination. In addition, preterm birth coupled with vaccination was associated with an apparent synergistic increase in the odds of NDD above that of vaccination alone. Nevertheless, the study findings should be interpreted with caution. First, additional research is needed to replicate the findings in studies with larger samples and stronger research designs. Second, subject to replication, potentially detrimental factors associated with the vaccination schedule should be identified and addressed and underlying mechanisms better understood. Such studies are essential in order to optimize the impact of vaccination of children’s health.

Competing Interests

The authors declare that they have no financial interests that had any bearing on any aspect of the conduct or conclusions of the study and the submitted manuscript.  

No comments: